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When waves propagate through a bounded plasma, the wave may be amplified or damped at the 
expense of the plasma kinetic energy. In many cases of interest, the primary effect of the wave 
is to cause plasma diffusion in velocity and configuration space, In the absence of collisions, the 
rearrangement of the plasma conserves entropy, as large-grain structures are mixed and 
fine-grain structures emerge. The maximum extractable energy by waves so diffusing the plasma 
is a quantity of fundamental interest; it can be defined, but it is difficult to calculate. Through the 
consideration of specific examples, certain strategies for maximizing energy extraction are 
identified. 

I. INTRODUCTION 

Consider the passage of a pulse of waves through a slab 
of plasma, in which the pulse first enters the otherwise 
undisturbed plasma slab, and then emerges from the slab, 
leaving the plasma entirely. The plasma is rearranged in 
response to the wave pulse, and the amount of energy in 
the plasma may change. Since the total energy is con- 
served, the wave may have either less or greater energy as 
it emerges from the slab. What is of interest in this paper is 
the maximum amount of energy, under certain practical 
constraints, that may be extracted from the plasma. 

Under different circumstances, there would be different 
constraints governing the ways in which the plasma could 
be rearranged by the wave. If the plasma is collisionless, 
each species must conserve its volume in the six- 
dimensional phase space of velocity and configuration 
space. In such a case, the maximum extractable energy 
from the plasma may be obtained through the so-called 
“Gardner restacking algorithm,“1*2 which we restate here. 

Suppose, the six-dimensional phase space is chopped 
into N little bins of volume V=~~A~AZA~,A~,&. Each 
bin has an average energy ei= m (v$+ v~i+ ~i)/2, where i 
varies from 1 to N. Let us order the bins such that if i> j, 
then E:> E, . Each bin also has an initial density for so that, 
initially, the ith bin has energy fofiV. The total energy of 
the plasma is then found just by summing jofit’ over the 
repeated index. Now consider a rearranging of the plasma 
that respects only that each bin density be preserved 
throughout the flow in the six-dimensional phase space. 
Then, let us restack (reorder) the foi in order of decreasing 
density, i.e., such that the set of final densities, {f/i>, is a 
permutation of the set of initial densities { f,,j}, such that 
if i> j, then fyi< ffj. The maximum extractable energy 
under this “Gardner restacking” is clearly 

IV,= C (f~i-fOi)Eivs (1) 
i 

and we choose to call W, the “Gardner free energy.” 
Here, the plasma is rearranged incompressibly in the six- 

dimensional phase space such that the bins with the largest 
densities eventually occupy the lowest energy states, but 
each bin density is preserved. In practical situations, how- 
ever, it would be highly unlikely ever to realize the maxi- 
mum energy extractable under Gardner restacking. 

Less energy, in general, might be extracted from a 
plasma if the wave were constrained to interact with par- 
ticles only by diffusing them in phase space from regions of 
high phase-space density to regions of lower phase-space 
density. This is the so-called quasilinear diffusion3 that oc- 
curs in resonant wave-particle interactions, and, in many 
circumstances, this would be the more likely type of 
plasma response to waves. The purpose of this paper is to 
examine the maximum extractable energy from the plasma 
slab under diffusive rearrangement. The restacking solu- 
tion to the maximal extraction problem under merely the 
incompressibility constraint is easily and succinctly stated 
in Eq. ( 1). In contrast, under the diffusive constraint that 
interests us here, obtaining the maximum energy extract- 
able is far more challenging. In fact, it turns out that a 
general solution to this problem is surprisingly difficult, so 
much so that, rather than a solution, what is offered here is 
mainly to identify, to motivate, and to pose precisely what 
is actually a quite fundamental problem of practical inter- 
est, and to indicate certain features that the solution must 
have. 

The question of “free energy” in a plasma, different 
under different constraints, has been addressed in a number 
of other contexts. Rosenbluth and Rutherford4 define three 
sources of free energy: (1) expansion free energy, arising 
from nonuniform density and temperature; (2) velocity 
space free energy, arising from non-Maxwellian velocity 
distributions; and (3) magnetic free energy, arising from 
the plasma diamagnetism. The free energy tapped in wave- 
driven plasmas, however, is not strictly considered in gen- 
erality in any of the above three categories; in general, the 
free energy tapped by waves relies at once on the details of 
the distribution function in both velocity and configuration 
space, something of a combination of categories ( 1) and 
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(2). Hence, a consideration of the free energy in the ex- 
pansion of a non-Maxwellian plasma could be more com- 
plicated than either the velocity space instabilities of a non- 
Maxwellian plasma or the spatial expansion of a 
Maxwellian plasma. 

Even the spatial expansion of a Maxwellian plasma is 
more complicated when the velocity space features are con- 
sidered. For example, more energy can be released, in prin- 
ciple, if specifically the energetic particles in the dense re- 
gion diffuse with the less energetic particles in the 
underdense region. Waves can indeed diffuse particles in 
such a manner, and, even for Maxwellian velocity distri- 
butions, there could be a greater number of energetic par- 
ticles in the denser region than slower particles in the un- 
derdense region. Just considering the expansion of a 
Maxwellian distribution4 would indicate less free energy 
than might be extracted in the above manner. 

The questions raised here must also be distinguished 
from the recent, interesting considerations of free energy in 
a plasma by Morrison and Pfirsch,5-7 who derive expres- 
sions for the free energy in perturbations about plasma 
equilibria. What Morrison and Pfirsch5 do is to impose 
precisely on the perturbation the constraint of “dynamic 
accessibility,” taking into account the effects of resonant 
particles. With improvement on expressions for the energy 
in various plasma modes, more precise considerations of 
plasma stability may be made. Such calculations are rele- 
vant in initial value problems, where the growth of a 
plasma mode relies on the free energy available to the 
mode. 

In the problem contemplated here, where the wave 
pulse enters and leaves the plasma from a boundary, such 
initial value problems do not arise. Since the plasma is 
driven externally, whether the waves employed would be 
stable or unstable were the plasma infinite and homoge- 
neous does not turn out to be directly relevant. Also, what 
is of interest here is a global quantity, the maximum energy 
extractable, which is something that could not be ap- 
proached from the viewpoint of local stability criteria. 

This particular posing of the energy extraction prob- 
lem, under the diffusive constraint, arose recently in the 
practical problem of extracting energy from the population 
of a particles that are produced in a fusion reactor.* Ex- 
tracting energy from the a particles is thought to be valu- 
able for two reasons: (i) less free energy in the a particles 
reduces the likelihood of unwanted deleterious instabilities 
of the plasma, and, (ii) the energy channeled into waves 
may perform certain useful tasks. One problem is to find 
the waves that might extract the largest amount of this free 
energy, and a statement of the maximum extractable en- 
ergy would be useful in evaluating specific extraction 
schemes. As it turns out, none of the calculations in the 
literature of plasma free energy quite addresses the kind of 
problem that needs to be solved to tlnd this maximum 
extractable energy. 

The diffusion that we consider here is formally nonlo- 
cal; particles can diffuse from any high-density region of 
phase space to any low-density region of phase space, even 
if the two regions are not contiguous. As we show later, 

such a posing of the problem is entirely consistent with 
particles physically diffusing only locally: it turns out that 
when viewed on a microscopic scale the diffusion is local; 
when viewed on a more coarse scale, the diffusion can 
appear as nonlocal. Hence, the mathematical posing of the 
problem does not disallow nonlocal diffusion. Note that for 
the Gardner restacking solution it matters not whether the 
flow in phase space is local or not, since nonlocal rear- 
rangements of density can always be constructed from lo- 
cal exchanges. 

The paper is organized as follows: Before stating for- 
mally the exact problem to be solved, we introduce a num- 
ber of examples: In Sec. II, we formulate this problem by 
taking as an example stimulated emission by a set of lasers. 
Here, the energy levels are discrete rather than continuous, 
as in a plasma. In Sec. III, certain insights into optimizing 
energy extraction are drawn through considering numeri- 
cal examples of the case of discrete energy levels. in Sec. 
IV, we give a precise statement of the problem both for 
discrete and continuous distribution functions. In Sec. V, 
we discuss how the wave diffusion describes a subset of all 
possible phase-space conserving rearrangements, and so is 
consistent with incompressibility. In addition, we prove 
that the maximum energy released under diffusive rear- 
rangements is bounded by the Gardner free energy, W,. 
In Sec. VI, the bump-on-tail distribution is considered in 
one dimension. In Sec. VII, the conclusions and main re- 
sults are discussed briefly. 

II. STIMULATED EMISSION BY A SET OF LASERS 

The problem posed in plasmas can similarly be posed 
with respect to stimulated emission by a set of lasers, and, 
for didactic reasons, a discussion with respect to the rear- 
rangement by lasers of populations of discrete energy levels 
ought to precede discussion concerning the rearrangement 
of a plasma continuum. 

Suppose, first, an atomic system with just three energy 
levels, the ground state at energy ee, the first excited state 
at Ed, and the second excited state at e2, with initial pop- 
ulation densities of, respectively, No, N, , and NZ . Suppose 
further the availability of three lasers with frequencies ylo, 
v20, and ‘v2,, that, respectively, can stimulate transitions 
between the first level and the ground state, the second 
level and the ground state, and the second level and the 
first level. What these lasers can do, essentially, is to ex- 
change the population in any one level with the population 
in any other level. This happens if the resonant frequency 
is applied for just the right amount of time (the so-called 
“r phasing”). The question we pose is the following: What 
can be done with these lasers to extract the maximum 
energy from the atomic system? 

The maximum energy extractable is, in this case, just 
the Gardner solution: Suppose for example that 
N1 > N2 > No, then the Gardner solution gives 
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where the populations were restacked so that the largest 
population now occupies the ground state. The set of lasers 
available can accomplish this in two steps: 

I eo El E2\ 

Exchange case: 
initial No Nt N2 

I I 
step 1 N, No N2 ’ 

step 2 \NI N2 No/ 
where, in step 1, applying frequency ylo for just the right 
amount of time exchanges the populations in energy levels 
0 and 1, and then, in step 2, applying frequency 7r21, again 
for just the right amount of time, exchanges the popula- 
tions in levels 1 and 2. This sequence for extracting the 
maximum energy can be expressed by the notation 
“b10,“21).” 

Note that these steps are not commutative, i.e., 
(Y,~,v~~)#( v2v21 ,yto). Thus, to extract the maximum en- 
ergy, the lasers must be both carefully synchronized to 
achieve the 7~ phasing and ordered in the correct sequence. 

Now suppose that timing the lasers so precisely as to 
exchange populations is very difficult or impossible- 
perhaps the atoms cannot all be stimulated at once-then 
one can imagine that all each laser can do is to tend to 
equalize populations rather than to exchange them. In the 
previous example, what would be accomplished by 
(~Io,~~I) is 

Diffusive case: 

CO El e2 

initial / No N1 N2 \ 

step 1 (N, +No) W,+No) 
2 2 

step 2 (Nl +No) (N,+No) (Nt +No) N2 2 4 +% 2 4 +z I 
Again, these steps are not commutative, i.e., 
(Y~~,v~~)#(Y~~,Y~~). Note, too, that if we denote the final 
population levels as Nh, N; , and N; , it is not guaranteed 
that Nh > N; > N$ ; it may take further applications of these 
lasers to converge to such a solution. 

In the case where the lasers exchanged populations, 
finding the optimal laser sequence was easy; not only was 
the minimum energy configuration apparent 
immediately-through the Gardner reordering-but, even 
if we did not guess immediately this state, we could simply 
have examined all accessible states, which are just permu- 
tations of the populations. With only three populations 
that is only 3!=6 states. In the case here, where the lasers 
diffuse rather than exchange populations, to examine all 
accessible states would not be so easy, even with just three 
energy levels, since there are now an infinite number of 
accessible states! 

Ill. NUMERICAL EXAMPLE FOR THREE-LEVEL 
SYSTEM 

Note that it is not possible to find a maximal sequence 
independent of the energy vector. For the energy vector 
here E= (0,1,4), sequence 3 above appears to release the 
maximum energy, but for a more “flat” energy vector, say 
E= (0,l ,i), sequence 2, which puts more atoms in the 
ground state, gives a lower final energy of y whereas se- 
quence 3, which removes the most atoms from the highest 
energy state, gives a tinal energy of 5. 

Suppose a three-level system, with a density vector One might profitably examine one more sequence. 
NE (N0,NI,N2), and an energy vector e= (E~,E~,E~). Consider 

Thus, the energy is WmN l e. For example, say that the 
energy vector is E= (0,1,4). If the initial density vector is 
Ne = (0,2,5 ) , then the initial energy is l@ = No * E = 22. Let 
us try to solve, for this example, for the minimum energy 
under diffusive rearrangement. 

One might try to apply frequency 2r20 first, since that 
releases the maximum energy, ten units; if one does so, 
then it is noticed that the population in level two is still 
larger than in level one, so that frequency zrzl should be 
applied to release more energy. The steps are 

Go=0 El=1 E2=4 

sequence 1 initial I@=22 2 5 

(%2o,Y21) step 1 W’=l2 2 2 
2 

step 2 p-4” 
\ 

I 9 
-4 2 5 $ 

I 

Note that since the populations are now monotonically 
decreasing in energy, no further energy can be extracted. 

Alternatively, consider the sequence (Y~~,v~~,Y~~), 
which gives 

eo=o El=1 E2=4 

initial I@=22 0 2 5 

sequence 2 step 1 W’=21 1 1 5 

1 I) 

(Y10~~20~~21) step 2 W*=l3 3 1 3’ 

step 3 W3=10 3 2 2 

Again, note that since the populations are now monotoni- 
cally decreasing in energy, no further energy can be ex- 
tracted. But, this sequence of lasers has extracted 14 units 
more energy than the sequence above, ( lrto ,‘v2, ) . A strategy 
apparently with merit is the following: 

Strategy I: Diffusion of particles first between 
similar population levels, all other things being 
equal, eventually releases more energy. 
That being the case, another sequence that might be 

tried is (v2, ,v~~,Y~~), which gives 

Eo=o E,=l E2=“i 

initial IV=22 0 
I 

2 5 
\ 

sequence 3 step 1 w’+ 0 
I 

(~21 ,~zo,~o) step 2 p,u 2 5 7 I ‘I 

step 3 ty3-” z.! -8 8 $j 

which actually releases the most energy of all! In fact, it 
appears that this sequence releases the maximum energy. 
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sequence 4 
(~21~~10Y%1.‘21 

initial wO=22 

step 1 W’=$ 

step 2 Jyx-63 
-4 

step 3 w3-4’ 
-4 

step 4 w”=% i 

0 2 

0 1 

i 3 

y z 
4 

y % 

This sequence turns out relatively badly; here, with the 
opportunity to deplete the second level at step 2, the first 
level was depleted instead. Apparently, a second strategy 
with merit is the following: 

Strategy 2: Depleting of particles the higher en- 
ergy level first, all other things being equal, even- 
tually releases more energy. 
How might one prove that sequence 3 releases the 

most energy’? One could probably offer, for this simple 
case, a rather cumbersome and inelegant proof, but we 
resist doing that without an algorithm for considering the 
N-level system, where N may be large. Evidently, the com- 
plexity of the problem increases rather substantially with 
increasing N. 

IV. STATEMENT OF THE PROBLEM 

Having motivated the importance of the problem, hav- 
ing identified where this problem might occur, and having 
indicated its complexity, finally, we are in a position to 
state the problem precisely, both for the case of discrete 
energy levels and for the case of a continuum in both en- 
ergy and space. For the discrete case, in which diffusion 
equalizes the density in two energy states, the rearrange- 
ment problem may be stated as follows: 

Statement of the problem, discrete d#iisive rearrange- 
ment: For an energy level vector er {Ei} and a density 
vector, at the kth iteration Nkr{NQ, find the iteration 
sequence (a,b, ,..., a,.&), meaning that, at the kth step, 
the density is iterated according to the rule 

@= y;;;l+N;;l),2 
L , 

:f ~~:s;:; (3) 
, ; 

that minimizes Wk = E l Nk = &I&, for k + CO. 
One can also state the problem in the continuum limit 

under general diffusive possibly nonlocal flow. Without 
loss of generality, as we show below, consider the one- 
dimensional density f (v,t) that evolves according to 

af 
dt= 

s 
K(w’,t) [. f (u’,t) -f (v,t) WV’, (4) 

where the kernel K(u,v’,t) has two important properties: 
(1) K(u,v’,t) =K(v’,u,t), which assures particle con- 

servation; 
(2) K(u,v’,t)>O, which assures that diffusion occurs 

in detailed balance, i.e., for any flow between v and u’, 

I 

af/dt>O if f( u,t> <f (u’,t). The continuum rearrangement 
problem to be solved can then be stated as follows- 

Statement of the problem, continuum d@usive rear- 
rangement: For a density function f (v,t) obeying Eq. 
(4), find the kernel K(v,v’,t) that minimizes 

w(t) = I 4v)f(u,t)dv (5) 

for t-t M) . For a nonrelativistic plasma, one would take 
E(V) =u2/2. 
That the stating of the problem in one dimension is, in 

fact, without loss of generality can be demonstrated by 
proceeding to the continuum limit as follows: Let f evolve 
in the six-dimensional phase space, which is chopped into 
M boxes of volume V= dx dy dz dv, dv,, dv, . Associated 
with each box i is an energy ej, and a number Ni( t), where 
the boxes may be ordered so that if i> j then er> Ei. Define 
f (s,t)=N;(t)/V, for iV<s< (i+l) V, and obtain a one- 
dimensional density distribution function in the limit 
A!f~cfJ. 

Note that the problem, even as put in one dimension, is 
quite formidable; in principle, to solve this exactly, all ker- 
nels K(u,u’,t) obeying properties (1) and (2) above must 
be searched, in order to find the kernel that evolves f to the 
minimum energy state. This is a search in three- 
dimensional function space. This might be posed variation- 
ally, but there does not occur to these authors any easy way 
of solving this problem. 

Finally, note thatf; as evolved through Eq. (4), obeys 
an H theorem.g Consider the quantity 

$ j-f(v,t)2dv 

= 
s s 

dv dv’K(u,v’,t)[2f(u,t)f(v’,t)-2f2(u,t)] 

= dv du’K(v,v’,t)[2f(v,t)f(u’,t)-f2(v,t) 
s s 

-f’2(v,t) 1 

=- 

where the first equality makes use of Eq. (4)) the second 
equality may be written because K(v,u’,t) is symmetric in 
u and v’, and the inequality follows from the positive def- 
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inite nature of K. It follows that since a positive quantity is 
monotonically nonincreasing, it must reach a steady state. 

V. RECONCILING DIFFUSIVE FLOW WITH PHASE 
SPACE INCOMPRESSIBILITY 

Iu posing the problem of the extraction of plasma en- 
ergy by waves traversing a plasma slab, it has been as- 
sumed that the waves can diffuse plasma from any region 
of phase space to any other region of phase space. Strictly 
speaking, diffusive flow cannot occur if the plasma is col- 
lisionless, and nonlocal diffusion is not physical. However, 
these considerations are on a microscopic scale; on a 
coarser scale, it will always appear that waves can, in prin- 
ciple, diffuse plasma from any region of phase space to any 
other region of phase space. Thus “fine-grained” entropy is 
conserved, even as what might be defined as “coarse- 
grained” entropy grows (see, e.g., Ref. 10). 

Consider for a one-dimensional density distribution, a 
series of phase space boxes, each of size AxAv, 

where we use horizontal placement to indicate the velocity 
axis, so that the different boxes represent different veloci- 
ties. The numbers in each box give the average phase-space 
density within the box. One diffusive step could give 

How might such a diffusive rearrangement occur in a 
system conserving phase-space density such as a collision- 
less plasma? Suppose the plasma were more finely grained, 
e.g., divide each phase-space box into four smaller boxes, 
each of size (AX/~) (AU/~), so that the density can be 
represented by 

Here, the second row of numbers represents the density at 
a slightly different spatial position, and the second column 
of numbers represents the density at a slightly different 
velocity. Now, a possible phase-space conserving rear- 
rangement is 

and, if one just looked at this phase-space conserving rear- 
rangement on a slightly coarser scale, then one would sim- 
ply see 

--- 

Thus, “diffusion” on one scale can be viewed as an incom- 
pressible flow on a more microscopic scale. 

A second point related to “fine graining” is that diffu- 
sion need not be treated as if it could occur only between 
contiguous areas of phase space. For example, in the ex- 
ample above, consider the diffusive rearrangement 

pm-q --* pqqpj I 

in which the diffusion occurs between the noncontiguous 
regions of phase space. But exactly this rearrangement is 
possible by considering a finer graining over a small region 
abutting the larger region, as we show. 

Suppose, in the original phase-space graining, each box 
is of size AxAv. Expand each box into N smaller boxes of 
size (Ax/N)Av. In other words, with each row represent- 
ing a spatial region of width AX/N, the distribution can be 
represented by 

8 2 4 

8 2 4 
: : : . . . 
8 2 4 

8 2 4. 

Now, suppose that diffusion takes place in the horizontal 
direction across the bottom sliver, and in the vertical di- 
rections across the side regions only, then, the distribution 
evolves to 

6- 2 6- 
6- 2 6- 

: : : L 
6- 2 6- 

6- 6- 6-, 

where by “6-” is a number slightly smaller than 6, ap- 
proaching 6 for N large, since the distribution function 
tries to equilibrate in the bottom and side regions. But on 
a coarser scale, the resulting distribution vector just ap- 
pears to be N= (6,2,6), as if the diffusion had occurred 
across noncontiguous regions. 

What has been shown in this section is that diffusive, 
nonlocal rearrangements of phase space are obtainable 
through local phase-space conserving rearrangements on a 
smaller scale. The opposite, however, is clearly not true; 
the density vector (2,5) cannot be rearranged diffusively 
on any scale to give (5,2). Thus, the diffusive rearrange- 
ments form a subset of all possible phase-space conserving 
rearrangements of the plasma in phase space. Since the 
Gardner restacking solution gives the maximum energy 
extractable under the superset of phase-space conserving 
rearrangements, clearly the maximum energy extractable 
through diffusive rearrangements is necessarily bounded 
through Eq. ( 1) by W, , the Gardner free energy. 

VI. FREE ENERGY IN BUMP-ON-TAIL DISTRIBUTION 

One of the classic examples of the release of energy 
through quasilinear diffusion by waves is the interaction of 
a spectrum of electrostatic waves with the so-called 
“bump-on-tail” distribution function. Here it is important 
to discriminate between an initial value problem, the case 
generally treated in the literature, and the boundary value 
problem, the situation of interest here. 

In the initial value problem, a spectrum of unstable 
waves grows until there is no more energy to feed the 
instability. In addition to the change in energy in the group 
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of particles resonant with the wave, there is also a change 
in energy of nonresonant particles, since these particles, 
nonetheless, oscillate in the wave. Of course, this book- 
keeping of the energy could be accomplished equally well 
through lumping the oscillatory energy of the nonresonant 
particles into the wave energy.“‘*2 In the boundary value 
problem treated here, the wave leaves the plasma slab en- 
tirely, so there is no remaining oscillatory motion within 
the wave; hence, the only change to the particle kinetic 
energy arises through the resonant particle rearrangement. 

The “bump-on-tail” distribution function is a one- 
dimensional distribution in velocity, with a minimum at 
superthermal energies. The maximum extractable energy 
through diffusive rearrangement occurs when the mini- 
mum is filled in from higher energy. What about a distri- 
bution function with two or more minima at superthermal 
energies, a “several-bumps-on-tail” distribution? If the dif- 
fusion can be nonlocal, determining the maximum extract- 
able energy is difficult; this is nothing simpler than the 
general statement of the problem in the continuum limit. 
However, if the diffusion were limited to local diffusion 
only, it turns out that this energy can be determined. If 
waves are employed only to diffuse particles from higher to 
lower energy, the temporal sequence of local diffusion is 
unimportant, since in any event, the lowest energy state is 
reached when there is a local flattening of abutting regions. 

VII. SUMMARY AND DISCUSSION 

What has been set forth here is the question of energy 
extraction from a plasma slab by means of waves traveling 
through it, such that the wave causes velocity and space 
diffusion within the plasma. This is the configuration that 
arises in certain problems of practical interest, for which 
knowledge of the maximum extractable energy would pro- 
vide a standard by which to evaluate any particular means 
of extraction. In addition to relating to contemporary 
problems in plasma physics, this question relates to maxi- 
mizing stimulated emission by a set of lasers. 

Some consideration must be paid to a number of sub- 
tleties: on a microscopic scale, the collisionless rearrange- 
ment of a plasma must preserve phase-space density and 
occur locally, but viewed on a coarser scale, the plasma 
appears to be rearranged diffusively and nonlocally. 

The problem has been posed here both for the discrete 
and the continuum cases. The latter posing is applicable to 
plasmas, while the former posing is applicable to stimu- 
lated emission in atomic systems as well as, indeed, any 
numerical and therefore necessarily discrete posing of the 
problem in plasmas. In both cases, the maximum extract- 
able energy by diffusive means has been shown to be less 
than the Gardner energy. 

What is interesting is that obtaining the precise maxi- 
mum extractable energy under diffusion by waves, even in 
relatively simple situations, is a surprisingly formidable 
task. For local diffusion in several dimensions, or, equiva- 
lently, nonlocal diffusion in one dimension, the temporal 
sequence of the wave diffusion is critical. Different final 
states are reached depending on the wave history. While no 
solution has been obtained for finding the maximum ex- 
tractable energy under such circumstances, certain insights 
have been drawn through the consideration of specific ex- 
amples, and certain strategies for optimizing energy extrac- 
tion have been discovered. 

What has been identified in this work is a fundamental 
quantity of practical interest, the free energy of a plasma 
under the constraint of diffusion by waves. While it is dif- 
ficult to calculate, it can be defined precisely. It is this 
quantity that is the free energy of interest in certain im- 
portant problems. 
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